Announcement
Collapse
No announcement yet.
Linear Programming  ETEA Model Test MCQS  Part  I
Collapse
X

0$m+n$0%0$mn$0%0mn0%0$\frac{m}{n}$0%0Minimize $z=\sum\limits_{j=1}^{n}{{}}\sum\limits_{i=1}^{m}{ {{c}_{ij}}\,{{x}_{ij}}}$ Subject to : $\sum\limits_{j=1}^{n}{{{x}_{ij}}\le {{a}_{i}},\ i=1,.......,m}$ $\sum\limits_{i=1}^{m}{{{x}_{ij}}={{b}_{j}},\ j=1,......,n}$ is a (L.P.P.) with number of constraintsTags: None

03200%03000%02300%0None of these0%0The maximum value of $z=4x+3y$ subject to the constraints $3x+2y\ge 160,\ 5x+2y\ge 200$ , $x+2y\ge 80$ ; $x,\ y\ge 0$ isTags: None

0100%0150%0120%080%0The minimum value of the objective function $z=2x+10y$ for linear constraints $x\ge 0,\ y\ge 0$ , $xy\ge 0$ , $x5y\le 5$ , isTags: None

0One solution0%0Three solution0%0An infinite no. of solution0%0None of these0%0The L.P. problem Max $z={{x}_{1}}+{{x}_{2}}$ such that $2{{x}_{1}}+{{x}_{2}}\le 1,\ {{x}_{1}}\le 2,\ {{x}_{1}}+{{x}_{2}}\le 3$ and ${{x}_{1}},\ {{x}_{2}}\ge 0$ hasTags: None

0$x+y=100;\ 4x+9y=300,\ 100x+120y=c$0%0$x+y\le 100;\ 4x+9y\le 300,\ x+2y=c$0%0$x+y\le 100;\ 4x+9y\le 300,\ 100x+120y=c$0%0$x+y\le 100;\ 9x+4y\le 300,\ x+2y=c$0%0A company manufactures two types of products A and B. The storage capacity of its godown is 100 units. Total investment amount is Rs. 30,000. The cost price of A and B are Rs. 400 and Rs. 900 respectively. If all the products have sold and per unit profit is Rs. 100 and Rs. 120 through A and B respectively. If x units of A and y units of B be produced, then two linear constraints and isoprofit line are respectivelyTags: None

0${{x}_{1}}=1.2$0%0${{x}_{2}}=2.6$0%0$z=10.2$0%0All the above0%0For the L.P. problem Min $z=2{{x}_{1}}+3{{x}_{2}}$ such that ${{x}_{1}}+2{{x}_{2}}\le 4,$ ${{x}_{1}}+{{x}_{2}}\le 6,\ \ {{x}_{1}}+3{{x}_{2}}\ge 9$ and ${{x}_{1}},\ {{x}_{2}}\ge 0$Tags: None

0$x\ge 0,\ y\ge 0,\ 2x+3y\ge 70,\ 3x+2y\ge 75$0%0$x\ge 0,\ y\ge 0,\ 2x+3y\le 70,\ 3x+2y\ge 75$0%0$x\ge 0,\ y\ge 0,\ 2x+3y\ge 70,\ 3x+2y\le 75$0%0$x\ge 0,\ y\ge 0,\ 2x+3y\le 70,\ 3x+2y\le 75$0%0A Firm makes pents and shirts. A shirt takes 2 hour on machine and 3 hour of man labour while a pent takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour machine and 75 hour of man labour available. If the firm determine to make x shirts and y pents per week, then for this the linear constraints areTags: None

0$4x2y\le 3$0%0$4x2y\le 3$0%0$4x2y\ge 3$0%0$4x2y\ge 3$0%0Shaded region is represented byTags: None

0Have solution for positive x and y0%0Have no solution for positive x and y0%0Have solution for all x0%0Have solution for all y0%0In equations $3xy\ge 3$ and $4xy>4$Tags: None

Linear Programming  ETEA Model Test MCQS  Part  I
0$2x+y\le 2,\ xy\le 1,\ x+2y\le 8$0%0$2x+y\ge 2,\ xy\le 1,\ x+2y\le 8$0%0$2x+y\ge 2,\ xy\ge 1,\ x+2y\le 8$0%0$2x+y\ge 2,\ xy\ge 1,\ x+2y\ge 8$0%0For the following shaded area, the linear constraints except $x\ge 0$ and $y\ge 0$ , areTags: None