Announcement

Collapse
No announcement yet.

Linear Programming - ETEA Model Test MCQS - Part - VII

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Linear Programming - ETEA Model Test MCQS - Part - VII

    For the L.P. problem Min $z={{x}_{1}}+{{x}_{2}}$ such that $5{{x}_{1}}+10{{x}_{2}}\le 0,\ \ {{x}_{1}}+{{x}_{2}}\ge 1,\ \ {{x}_{2}}\le 4$ and ${{x}_{1}},\ {{x}_{2}}\ge 0$
    0
    There is a bounded solution
    0%
    0
    There is no solution
    0%
    0
    There are infinite solutions
    0%
    0
    None of these
    0%
    0

  • #2
    On maximizing $z=4x+9y$ subject to $x+5y\le 200,$ $x+5y\le 200,\ \ 2x+3y\le 134$ and $x,\ y\ge 0$ , $z=$
    0
    380
    0%
    0
    382
    0%
    0
    384
    0%
    0
    None of these
    0%
    0

    Comment


    • #3
      For the L.P. problem Min $z=2x+y$ subject to $5x+10y\le 50,$ $x+y\ge 1,\ \ y\le 4$ and $x,\ y\ge 0$ , $z=$
      0
      1
      0%
      0
      2
      0%
      0
      ½
      0%
      0

      Comment


      • #4
        For the L.P. problem Min $z=2x-10y$ subject to $x-y\ge 0,\ \ x-5y\ge -5$ and $x,\ y\ge 0$ , $z=$
        0
        ?10
        0%
        0
        ?20
        0%
        0
        10
        0%
        0

        Comment


        • #5
          The point at which the maximum value of $(3x+2y)$ subject to the constraints $x+y\le 2,\ x\ge 0,\ y\ge 0$ is obtained, is
          0
          (0, 0)
          0%
          0
          (1.5, 1.5)
          0%
          0
          (2, 0)
          0%
          0
          (0, 2)
          0%
          0

          Comment


          • #6
            The minimum value of objective function $c=2x+2y$ in the given feasible region, is
            0
            134
            0%
            0
            40
            0%
            0
            38
            0%
            0
            80
            0%
            0

            Comment


            • #7
              The minimum value of linear objective function $c=2x+2y$ under linear constraints $3x+2y\ge 12$ , $x+3y\ge 11$ and $x,\ y\ge 0$ , is
              0
              10
              0%
              0
              12
              0%
              0
              6
              0%
              0
              5
              0%
              0

              Comment


              • #8
                The solution for minimizing the function $z=x+y$ under a L.P.P. with constraints $x+y\ge 1$ , $x+2y\le 10$ , $y\le 4$ and $x,\ y\ge 0$ , is
                0
                $x=0,\ y=0,\ z=0$
                0%
                0
                $x=3,\ y=3,\ z=6$
                0%
                0
                There are infinitely solutions
                0%
                0
                None of these
                0%
                0

                Comment


                • #9
                  The solution of a problem to maximize the objective function $z=x+2y$ under the constraints $x-y\le 2$ , $x+y\le 4$ and $x,\ y\ge 0$ , is
                  0
                  $x=0,\ y=4,\ z=8$
                  0%
                  0
                  $x=1,\ y=2,\ z=5$
                  0%
                  0
                  $x=1,\ y=4,\ z=9$
                  0%
                  0
                  $x=0,\ y=3,\ z=6$
                  0%
                  0

                  Comment


                  • #10
                    To maximize the objective function $z=2x+3y$ under the constraints $x+y\le 30,\ x-y\ge 0,\ y\le 12,$ $x\le 20,$ $y\ge 3$ and $x,\ y\ge 0$
                    0
                    $x=12,\ y=18$
                    0%
                    0
                    $x=18,\ y=12$
                    0%
                    0
                    $x=12,\ y=12$
                    0%
                    0
                    $x=20,\ y=10$
                    0%
                    0

                    Comment

                    Working...
                    X