Announcement

Collapse
No announcement yet.

Linear Programming - ETEA Model Test MCQS - Part - VIII

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Linear Programming - ETEA Model Test MCQS - Part - VIII

    The maximum value of $P=6x+8y$ subject to constraints $2x+y\le 30,\ x+2y\le 24$ and $x\ge 0,\ y\ge 0$ is
    0
    90
    0%
    0
    120
    0%
    0
    96
    0%
    0
    240
    0%
    0

  • #2
    The maximum value of $P=x+3y$ such that $2x+y\le 20$ , $x+2y\le 20$ , $x\ge 0,\ y\ge 0$ , is
    0
    10
    0%
    0
    60
    0%
    0
    30
    0%
    0
    None of these
    0%
    0

    Comment


    • #3
      The maximum value of $z=4x+2y$ subject to the constraints $2x+3y\le 18,\ x+y\ge 10$ ; $x,\ y\ge 0$ , is
      0
      36
      0%
      0
      40
      0%
      0
      20
      0%
      0
      None of these
      0%
      0

      Comment


      • #4
        $z=ax+by,\ a,\ b$ being positive, under constraints $y\ge 1$ , $x-4y+8\ge 0$ , $x,\ y\ge 0$ has
        0
        Finite maximum
        0%
        0
        Finite minimum
        0%
        0
        An unbounded minimum solution
        0%
        0
        An unbounded maximum solution
        0%
        0

        Comment


        • #5
          By graphical method, the solution of linear programming problem Maximize $z=3{{x}_{1}}+5{{x}_{2}}$ Subject to $3{{x}_{1}}+2{{x}_{2}}\le 18$ , ${{x}_{1}}\le 4$ , ${{x}_{2}}\le 6$ , ${{x}_{1}}\ge 0$ , ${{x}_{2}}\ge 0$ is
          0
          ${{x}_{1}}=2,\ {{x}_{2}}=0,\ z=6$
          0%
          0
          ${{x}_{1}}=2,\ {{x}_{2}}=6,\ z=36$
          0%
          0
          ${{x}_{1}}=4,\ {{x}_{2}}=3,\ z=27$
          0%
          0
          ${{x}_{1}}=4,\ {{x}_{2}}=6,\ z=42$
          0%
          0

          Comment


          • #6
            The point at which the maximum value of $(x+y)$ subject to the constraints $2x+5y\le 100$ , $\frac{x}{25}+\frac{y}{49}\le 1$ , $x,\ y\ge 0$ is obtained, is
            0
            (10, 20)
            0%
            0
            (20, 10)
            0%
            0
            (15, 15)
            0%
            0
            $\left( \frac{50}{3},\ \frac{40}{3} \right)$
            0%
            0

            Comment


            • #7
              The maximum value of $(x+2y)$ under the constraints $2x+3y\le 6,\ x+4y\le 4,\ \ x,\ y\ge 0$ is
              0
              3
              0%
              0
              3.2
              0%
              0
              2
              0%
              0
              4
              0%
              0

              Comment


              • #8
                The maximum value of $10x+5y$ under the constraints $3x+y\le 15,\ x+2y\le 8,$ $x,\ y\ge 0$ is
                0
                20
                0%
                0
                50
                0%
                0
                53
                0%
                0
                70
                0%
                0

                Comment


                • #9
                  The point at which the maximum value of $(x+y)$ , subject to the constraints $x+2y\le 70,\ 2x+y\le 95$ , $x,\ y\ge 0$ is obtained, is
                  0
                  (30, 25)
                  0%
                  0
                  (20, 35)
                  0%
                  0
                  (35, 20)
                  0%
                  0
                  (40, 15)
                  0%
                  0

                  Comment


                  • #10
                    If $3{{x}_{1}}+5{{x}_{2}}\le 15$ , $5{{x}_{1}}+2{{x}_{2}}\le 10$ , ${{x}_{1}},\ {{x}_{2}}\ \ \ge 0$ then the maximum value of $5{{x}_{1}}+3{{x}_{2}}$ , by graphical method is
                    0
                    $12\frac{7}{19}$
                    0%
                    0
                    $12\frac{1}{7}$
                    0%
                    0
                    $12\frac{3}{5}$
                    0%
                    0
                    12
                    0%
                    0

                    Comment

                    Working...
                    X